4.8 Article

Interdiffusion and Doping Gradients at the Buffer/Absorber Interface in Thin-Film Solar Cells

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 34, 页码 28553-28565

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b08076

关键词

doping profile; capacitance-voltage; Mott-Schottky; thin-film solar cells; diffusion

资金

  1. Fonds National de la Recherche Luxembourg (FNR)

向作者/读者索取更多资源

An accurate determination of the net dopant concentration in photovoltaic absorbers is critical for understanding and optimizing solar cell performance. The complex device structure of multilayered thin-film solar cells poses challenges to determine the dopant concentration. Capacitance-voltage (C-V) measurements of Cu(In,Ga)Se-2 thin-film solar cells typically yield depth-dependent apparent doping profiles and are not consistent with Hall measurements of bare absorbers. We show that deep defects cannot fully explain these discrepancies. We instead find that the space charge region capacitance follows the model of a linearly graded junction in devices containing a CdS or Zn(O,S) buffer layer, indicating that elemental intermixing at the absorber/buffer interface alters the dopant concentration within the absorber. For absorbers covered with MgF2, C-V measurements indeed agree well with Hall measurements. Photoluminescence measurements of Cu(In,Ga)Se-2 absorbers before and after deposition of a CdS layer provide further evidence for a significant reduction of the near-surface net dopant concentration in the presence of CdS. We thus demonstrate that interdiffusion at the absorber/buffer interface is a critical factor to consider in the correct interpretation of doping profiles obtained from C-V analysis in any multilayered solar cell and that the true bulk dopant concentration in thin-film devices might be considerably different.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据