4.8 Article

Nature-Inspired, 3D Origami Solar Steam Generator toward Near Full Utilization of Solar Energy

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 34, 页码 28517-28524

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b07150

关键词

photothermal conversion; solar steam generation; solar energy utilization; Miura origami; carbon nanocomposites

资金

  1. King Abdullah University of Science and Technology (KAUST) center competitive fund (CCF)

向作者/读者索取更多资源

Solar steam generation, due to its capability of producing clean water directly by solar energy, is emerging as a promising eco-friendly and energy-efficient technology to address global challenges of water crisis and energy shortage. Although diverse materials and architectures have been explored to improve solar energy utilization, high efficiency in solar steam generation could be accomplished only with external optical and thermal management. For the first time, we report a deployable, three-dimensional (3D) origami-based solar steam generator capable of near full utilization of solar energy. This auxetic platform is designed based on Miura-ori tessellation and is able to efficiently recover radiative and convective heat loss as well as to trap solar energy via its periodic concavity pattern. The 3D solar steam generator device with a nanocarbon composite of graphene oxide and carbon nanotubes being photo thermal component in this work shows a very strong dependence between its solar energy efficiency and surface areal density. The device yields an extraordinary solar energy efficiency close to 100% under 1 sun illumination at a highly folded configuration. The 3D origami device can withstand a great number of folding and unfolding cycles and shows unimpaired solar steam generation performances. The unique structural feature of the 3D origami structure offers a new insight into the future development of highly efficient and easily deployable solar steam generator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据