4.8 Article

Matryoshka Doll-Like CeO2 Microspheres with Hierarchical Structure To Achieve Significantly Enhanced Microwave Absorption Performance

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 32, 页码 27540-27547

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b10353

关键词

cerium oxide; hierarchical structure; yolk-shell; dielectric loss; microwave absorption

资金

  1. National Natural Science Foundation of China [11727807, 51725101, 51672050]
  2. Major Program of NSFC [61790580]
  3. Science and Technology Commission of Shanghai Municipality [2016YFE0105700]

向作者/读者索取更多资源

Recently, it is still a great challenge to develop a new type of absorber that possesses special advantages of low cost, ultrawide bandwidth, and strong absorption intensity. Herein, the unique Matryoshka doll-like CeO2 microspheres with tunable interspaces were successfully synthesized by a facile and template-free method. The as-synthesized hierarchical yolk-shell CeO2 microspheres were constructed by a layer of outer shell and multiple inner cores. The interspace gap of the microspheres can be simply adjusted only by altering the solvothermal reaction time. Simultaneously, Ostwald ripening, Kirkendall effect, and self-etching process contribute a synergetic growth mechanism responsible for this amazing hierarchical architecture. Importantly, the Matryoshka doll-like CeO2 microspheres exhibited significantly strong microwave absorption in the frequency range of 2-18 GHz, with a reflection loss of -71.3 dB at 14.5 GHz and an effective absorption bandwidth of 5.4 GHz (<-10 dB), which is superior to the multicomponent absorbers. Such an outstanding microwave absorption performance stems from the unique hierarchical yolk-shell structure and the designable interspaces, leading to the multiple scattering, interfacial polarization, and plasma dielectric oscillation from the abundant interfaces and curved surfaces, which can be illustrated by the related results from electron holography and electron energy loss spectroscopy. To the best of our knowledge, the Matryoshka doll-like CeO2 microspheres with a facile synthesis process, low cost, and excellent microwave absorption performance are believed to be an optimal candidate of single-component absorbers and helpful in the study of absorption mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据