4.8 Article

Synthesizing Nitrogen-Doped Activated Carbon and Probing its Active Sites for Oxygen Reduction Reaction in Microbial Fuel Cells

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 10, 页码 7464-7470

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am5008547

关键词

nitrogen-doping; activated carbon; oxygen reduction reaction; microbial fuel cell; bioenergy

资金

  1. Research Growth Initiative (RGI) of UW-Milwaukee

向作者/读者索取更多资源

Cost-effective cathode catalysts are critical to the development of microbial fuel cell (MFC) technology. Herein, a synthesis route is presented to improve the nitrogen content and nitrogen functionality in the nitrogen-doped activated carbon (AC) as a low cost and efficient catalyst for oxygen reduction reaction (ORR). It was demonstrated that key factors for successful nitrogen doping were the proper pretreatment with acidic and alkaline solutions consecutively and the use of a solid-state nitrogen precursor. The AC pretreated with both acidic and alkaline solutions resulted in a nitrogen content of 8.65% (atom %) (in which 5.56% is pyridinic-N) on its surface, and exhibited an outstanding electrocatalytic activity for ORR in both electrochemical and MFC tests. A good agreement between pyridinic-N content and ORR activity was observed, indicating that pyridinic-N is the most active site for ORR in the nitrogen-doped AC. The pretreated nitrogen-doped AC catalysts resulted in a higher maximum power density than the untreated AC and the commercial Pt/C (10% Pt) catalysts. The exceptional performance associated with the advantages, such as simple and convenient preparation procedure, easily obtained raw materials, and low cost, makes the pretreated nitrogen-doped AC promising for the ongoing effort to scale up MFCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据