4.8 Article

Facile Synthesis of Graphite/PEDOT/MnO2 Composites on Commercial Supercapacitor Separator Membranes as Flexible and High-Performance Supercapacitor Electrodes

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 13, 页码 10506-10515

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am5021028

关键词

commercial supercapacitor separator; graphite; PEDOT; MnO2; flexible supercapacitor

资金

  1. Shun Hing Institute of Advanced Engineering (SHIAE) [8115045]
  2. CUHK

向作者/读者索取更多资源

A facile and low-cost method is presented to synthesize graphite/PEDOT/MnO2 composites with controlled network structures on commercial supercapacitor separator (CSS) membranes for high-performance supercapacitors, in which pencil lead and a cellulose-based commercial supercapacitor separator membrane were applied as the graphite source and the flexible substrate, respectively. The dependence of PEDOT and MnO2 loading on the structural formation, the electrochemical performance of the hybrid electrode, and the formation mechanism of MnO2 nanowires are systematically investigated. The optimized electrode possesses a high areal capacitance of 316.4 mF/cm(2) at a scan rate of 10 mV/s and specific capacitance of 195.7 F/g at 0.5 A/g. The asymmetric supercapacitor device assembled using optimized CSS/Graphite/PEDOT/MnO2 electrode and activated carbon electrode exhibits a high energy density of 31.4 Wh/kg at a power density of 90 W/kg and maintains 1 Wh/kg at 4500 W/kg. After 2000 cycles, the device retains 81.1% of initial specific capacitance, and can drive a mini DC-motor for ca. 10 s. The enhanced capability of the CSS-based graphite/PEDOT/MnO2 network electrode has high potential for low-cost, high-performance, and flexible supercapacitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据