4.8 Article

Mesoporous Gold and Palladium Nanoleaves from Liquid-Liquid Interface: Enhanced Catalytic Activity of the Palladium Analogue toward Hydrazine-Assisted Room-Temperature 4-Nitrophenol Reduction

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 12, 页码 9134-9143

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am503251r

关键词

interfacial reaction; leafy nanostructure; aromaticity driven; noble metals; hydrogenation; 4-nitrophenol

资金

  1. DST
  2. CSIR, New Delhi, India

向作者/读者索取更多资源

The importance of an interfacial reaction to obtain mesoporous leafy nanostructures of gold and palladium has been reported. A new synthetic strategy involving 1,4-dihydropyridine ester (DHPE) as a potential reducing agent performs exceptionally well for the desired morphologies of both the noble metals at room temperature. The DHPE in turn transforms into its oxidized aromatic form. The as-synthesized gold leaves exhibit high surface-enhanced Raman scattering activity with rhodamine 6G (R6G) due to their hyperbranched structure. It is worthwhile that as-synthesized porous architectures of palladium support the room-temperature hydrogenation of 4-nitrophenol (4-NP) by hydrazine hydrate (N2H4 center dot H2O), reported for the first time. Furthermore, MPL exhibits exceptionally good catalytic activity toward electrooxidation of formic acid. Therefore, an aromaticity driven synthetic technique achieves a rationale to design leafy nanostructures of noble metals from the liquid liquid interface for multifaceted applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据