4.8 Article

Biocompatible Ionic Liquid-Biopolymer Electrolyte-Enabled Thin and Compact Magnesium-Air Batteries

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 23, 页码 21110-21117

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am505985z

关键词

-

资金

  1. Australia Research Council (ARC)
  2. ARC

向作者/读者索取更多资源

With the surge of interest in miniaturized implanted medical devices (IMDs), implantable power sources with small dimensions and biocompatibility are in high demand. Implanted battery/supercapacitor devices are commonly packaged within a case that occupies a large volume, making miniaturization difficult. In this study, we demonstrate a polymer electrolyte-enabled biocompatible magnesium-air battery device with a total thickness of approximately 300 ?m. It consists of a biocompatible polypyrrole-para(toluene sulfonic acid) cathode and a bioresorbable magnesium alloy anode. The biocompatible electrolyte used is made of choline nitrate (ionic liquid) embedded in a biopolymer, chitosan. This polymer electrolyte is mechanically robust and offers a high ionic conductivity of 8.9x 10(-3) S cm(-1). The assembled battery delivers a maximum volumetric power density of 3.9 W L-1, which is sufficient to drive some types of IMDs, such as cardiac pacemakers or biomonitoring systems. This miniaturized, biocompatible magnesium-air battery may pave the way to a future generation of implantable power sources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据