4.8 Article

Lipid-like Self-Assembling Peptide Nanovesicles for Drug Delivery

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 11, 页码 8184-8189

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am501673x

关键词

lipid-like peptides; designer peptide surfactants; liposome alternatives; tunable peptides; controlled release

资金

  1. Center for Environmental Health Sciences (CEHS) at MIT [NIEHS ES002109]

向作者/读者索取更多资源

Amphiphilic self-assembling peptides are functional materials, which, depending on the amino acid sequence, the peptide length, and the physicochemical conditions, form a variety of nanostructures including nanovesicles, nanotubes, and nanovalves. We designed lipid-like peptides with an aspartic acid or lysine hydrophilic head and a hydrophobic tail composed of six alanines (i.e., ac-A(6)K-CONH2, KA(6)-CONH2, ac-A(6)D-COOH, and DA(6)-COOH). The resulting novel peptides have a length similar to biological lipids and form nanovesicles at physiological conditions. AFM microscopy and light scattering analyses of the positively charged lipid-like ac-A(6)K-CONH2, KA(6)-CONH2 peptide formulations showed individual nanovesicles. The negatively charged ac-A(6)D-COOH and DA(6)-COOH peptides self-assembled into nanovesicles that formed clusters that upon drying were organized into necklace-like formations of nanovesicles. Encapsulation of probe molecules and release studies through the peptide bilayer suggest that peptide nanovesicles may be good candidates for sustained release of pharmaceutically active hydrophilic and hydrophobic compounds. Lipid-like peptide nanovesicles represent a paradigm shifting system that may complement liposomes for the delivery of diagnostic and therapeutic agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据