4.8 Article

Lithium Species in Electrochemically Lithiated and Delithiated Silicon Oxycarbides

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 15, 页码 12827-12836

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am502811f

关键词

rechargeable lithium batteries; anode material; silicon oxycarbide; amorphous structure; electrochemical lithium storage; lithium species

资金

  1. Dow Corning Corporation
  2. Dow Corning Toray Co. Ltd.

向作者/读者索取更多资源

The work described herein deals with efforts to make a persuasive correlation between structural characteristics and electrochemical lithium storage for a silicon oxycarbide prepared from poly(methylhydrogensiloxane) and divinylbenzene. Structural characterization reveals that the silicon oxycarbide includes excess free carbon in an amorphous network. The reversibility of lithiation and delithiation in the silicon oxycarbide reaches 74% between 0.005 and 3 V relative to lithium at the first cycle but falls to only ca. 30% between 0.4 and 3 V. We found two resonances at 0 and 2.4 ppm in the Li-7 magic angle spinning nuclear magnetic resonance spectrum of the silicon oxycarbide lithiated to 0.4 V, whose contributions are 67 and 33%, respectively, and thus are in good agreement with the reversibility observed between 0.4 and 3 V. The fully lithiated silicon oxycarbide shows a single resonance at ca. 3-9 ppm, which tends to broaden at lower temperatures to -120 degrees C, whereas the fully delithiated silicon oxycarbide has a single resonance at 0 ppm. These results indicate that both reversible and irreversible lithium species have ionic natures. The Li K edge in electron energy loss spectroscopy does not show clearly any identified near-edge fine structures in the inner part of the silicon oxycarbide after delithiation. Near the surface, on the other hand, LIP and oxygen- and phosphorus-containing compounds were found to be the major constituents of a solid electrolyte interface (SEI) layer. Over repeated lithiation and delithiation, the SEI layer appears to become thick, which should in part trigger capacity fading.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据