4.8 Article

Abnormal Cyclibility in Ni@Graphene Core-Shell and Yolk-Shell Nanostructures for Lithium Ion Battery Anodes

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 16, 页码 13765-13769

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am503016s

关键词

electrochemical pulverization; Ni@Graphene; core-shell; yolk-shell; Lithium ion battery

资金

  1. National Natural Science Foundation of China [51125008, 11274392]

向作者/读者索取更多资源

Electrochemical pulverization, a commonly undesirable process for durable electrodes, is reinterpreted in popular yolk-shell nanostructures. In comparison with core-shell counterparts, the yolk-shell ones exhibit enhancing ion storage and rate capability for lithium ion battery anodes. The enhancement benefits from lowered activation barriers for lithiation and delithiation, improved surfaces and interfaces for ion availability contributed by endless pulverization of active materials. By controlled etching, stable cycling with significantly improved capacity (similar to 800 mAh g(-1) at 0.1 A g(-1), 600 mAh g(-1) at 0.5 A g(-1), and 490 mAh g(-1) at 1 A g(-1) vs 140 mAh g(-1) at 0.1 A g(-1)) is achieved at various rates for Ni@Graphene yolk-shell structures. Meanwhile, large rate of 20 A g(-1) with capacity of 145 mAh g(-1) is retained. Given initial pulverization for the activation, the tailored electrodes could stably last for more than 1700 cycles with an impressive capacity of ca. 490 mAh g(-1) at 5 A g(-1). Insights into electrochemical processes by TEM and STEM reveal dispersive pulverized active nanocrystals and the intact protective graphene shells play the leading role.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据