4.8 Article

Surface-Initiated Hyperbranched Polyglycerol as an Ultralow-Fouling Coating on Glass, Silicon, and Porous Silicon Substrates

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 17, 页码 15243-15252

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am503570v

关键词

hyperbranched polyglycerol; surface grafting; biofouling; antifouling; low-fouling; nonfouling

向作者/读者索取更多资源

Anionic ring-opening polymerization of glycidol was initiated from activated glass, silicon, and porous silicon substrates to yield thin, ultralow-fouling hyperbranched polyglycerol (HPG) graft polymer coatings. Substrates were activated by deprotonation of surface-bound silanol functionalities. HPG polymerization was initiated upon the addition of freshly distilled glycidol to yield films in the nanometer thickness range. X-ray photoelectron spectroscopy, contact angle measurements, and ellipsometry were used to characterize the resulting coatings. The antifouling properties of HPG-coated surfaces were evaluated in terms of protein adsorption and the attachment of mammalian cells. The adsorption of bovine serum albumin and collagen type I was found to be reduced by as much as 97 and 91%, respectively, in comparison to untreated surfaces. Human glioblastoma and mouse fibroblast attachment was reduced by 99 and 98%, respectively. HPG-grafted substrates outperformed polyethylene glycol (PEG) grafted substrates of comparable thickness under the same incubation conditions. Our results demonstrate the effectiveness of antifouling HPG graft polymer coatings on a selected range of substrate materials and open the door for their use in biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据