4.8 Article

Hollow Microgel Based Ultrathin Thermoresponsive Membranes for Separation, Synthesis, and Catalytic Applications

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 20, 页码 17702-17712

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am504120c

关键词

hollow microgel; ultrathin microgel membrane; thermoresponsive membrane; separation; catalytic application

向作者/读者索取更多资源

Thermoresponsive core-shell microgels with degradable core are synthesized via surfactant based free radical polymerization using N,N'-(1,2-dihydroxy-ethylene)bis(acrylamide) (DHEA) as a cross-linker for core preparation. The 1,2-glycol bond present in DHEA is susceptible to NaIO4 solution, and thus, the structure can be cleaved off resulting in hollow microgel. Ultrathin membranes are prepared by suction filtration of a dilute suspension of core-shell microgels over a sacrificial layer of Cd(OH)(2) nanostrand coated on track etched membrane. After removal of the degraded cores from microgels, the membranes are cross-linked with glutaraldehyde and the nanostrands are removed by passing a 10 mM HCl solution. The prepared membranes are thoroughly characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and dynamic contact angle for morphology, thermoresponsive, and hydrophilic properties, respectively. The prepared membranes showed thermoresponsive permeation behavior and remarkable separation performance for low molecular weight dyes and lysozyme protein. These membranes are also used to synthesize gold nanoparticles and immobilize lactate dehydrogenase enzyme for catalytic and biocatalytic application. The results for water permeation, solute rejection, and ability to immobilize gold nanoparticles and enzymes showed its wide range of applicability. Furthermore, the synthesis of hollow microgel is simple and environmentally friendly, and the membrane preparation is easy, scalable, and other microgel systems can also be used. These responsive membranes constitute a significant contribution to advanced separation technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据