4.8 Article

Tin-Germanium Alloys as Anode Materials for Sodium-Ion Batteries

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 18, 页码 15860-15867

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am503365k

关键词

tin; germanium; alloy; sodium-ion battery

资金

  1. Welch Foundation [F-1436, F-1131]
  2. Hertz Foundation
  3. University of Texas Office

向作者/读者索取更多资源

The sodium electrochemistry of evaporatively deposited tin, germanium, and alloys of the two elements is reported. Limiting the sodium stripping voltage window to 0.75 V versus Na/Na+ improves the stability of the tin and tin-rich compositions on repeated sodiation/desodiation cycles, whereas the germanium and germanium-rich alloys were stable up to 1.5 V. The stability of the electrodes could be correlated to the surface mobility of the alloy species during deposition suggesting that tin must be effectively immobilized in order to be successfully utilized as a stable electrode. While the stability of the alloys is greatly increased by the presence of germanium, the specific Coulombic capacity of the alloy decreases increasing germanium content due to the lower Coulombic capacity of germanium. Additionally, the presence of germanium in the alloy suppresses the formation of intermediate phases present in the electrochemical sodiation of tin. Four-point probe resistivity measurements of the different compositions show that electrical resistivity increases with germanium content. Pure germanium is the most resistive yet exhibited the best electrochemical performance at high current densities which indicates that electrical resistivity is not rate limiting for any of the tested compositions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据