4.8 Article

Novel Pyrolyzed Polyaniline-Grafted Silicon Nanoparticles Encapsulated in Graphene Sheets As Li-Ion Battery Anodes

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 8, 页码 5996-6002

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am501239r

关键词

graphene; silicon; polyaniline; surface-initiated polymerization; diazonium functionalization; lithium-ion batteries

资金

  1. multidisciplinary Undergraduate Research Initiative (MURI) of Indiana University Purdue University Indianapolis (IUPUI)

向作者/读者索取更多资源

A simple method to fabricate graphene-encapsulated pyrolyzed polyaniline-grafted Si nanoparticles has been developed. Instead of using Si nanoparticles with a native oxide layer, HF-treated Si nanoparticles were employed in this work. The uniqueness of this method is that, first, a PANI layer over the Si nanoparticles was formed via the surface-initiated polymerization of aniline on the surface of aniline-functionalized Si nanoparticles; then, the PANI-grafted Si nanoparticles were wrapped by the GO sheets via pi-pi interaction and electrostatic attraction between the GO and the PANI. Finally, the GO and PANI were pyrolyzed, and this pyrolyzed PANI layer tightly binds the graphene sheets and the Si nanoparticles together in the composite. The composite materials exhibit better cycling stability and Coulombic efficiency as anodes in lithium ion batteries, as compared to pure Si nanoparticles and physically mixed graphene/Si composites. After 300 cycles at a current density of 2 A/g, the composite electrodes can still deliver a specific capacity of about 900 mAh/g which corresponds to similar to 76% capacity retention. The enhanced performance can be attributed to the absence of surface oxides, the better electronic conductivity, faster ion diffusion rate, and the strong interaction between the graphene sheets and the tightly bound carbon-coated Si nanopartides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据