4.8 Article

Freestanding Graphene Paper Supported Three-Dimensional Porous Graphene-Polyaniline Nanoconnposite Synthesized by Inkjet Printing and in Flexible All-Solid-State Supercapacitor

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 18, 页码 16312-16319

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am504539k

关键词

freestanding graphene paper; three-dimensional porous graphene-polyaniline nanocomposite; full inkjet printing synthesis; flexible electrode; all-solid-state supercapacitor

资金

  1. National Natural Science Foundation of China [51173055, 21305048]
  2. National Program on Key Basic Research Project (973 Program) [2013CBA01600]

向作者/读者索取更多资源

Freestanding paper-like electrode materials have trigged significant research interest for their practical application in flexible and lightweight energy storage devices. In this work, we reported a new type of flexible nanohybrid paper electrode based on full inkjet printing synthesis of a freestanding graphene paper (GP) supported three-dimensional (3D) porous graphene hydrogel (GH)-polyaniline (PANI) nanocomposite, and explored its practical application in flexible all-solid-state supercapacitor (SC). The utilization of 3D porous GH scaffold to load nanostructured PANI dramatically enhances the electrical conductivity, the specific capacitance and the cycle stability of the GH-PANI nanocomposite. Additionally, GP can intimately interact with GH-PANI through pi-pi stacking to form a unique freestanding GP supported GH-PANI nanocomposite (GH-PANI/GP) with distinguishing mechanical, electrochemical and capacitive properties. These exceptional attributes, coupled with the merits of full inkjet printing strategy, lead to the formation of a high-performance binder-free paper electrode for flexible and lightweight SC application. The flexible all-solid-state symmetric SC based on GH-PANI/GP electrode and gel electrolyte exhibits remarkable mechanical flexibility, high cycling performance and acceptable energy density of 24.02 Wh kg(-1) at a power density of 400.33 W kg(-1). More importantly, the proposed simple and scale-up full inkjet printing procedure for the preparation of freestanding GP supported 3D porous GH-PANI nanocomposite is a modular approach to fabricate other graphene-based nanohybrid papers with tailorable properties and optimal components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据