4.8 Article

Manipulating Dispersion and Distribution of Graphene in PLA through Novel Interface Engineering for Improved Conductive Properties

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 16, 页码 14069-14075

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am503283f

关键词

graphene; functionalization; dispersion; polylactic acid; nanocomposites; conductivity

向作者/读者索取更多资源

This study aimed to enhance the conductive properties of PLA nanocomposite by controlling the dispersion and distribution of graphene within the minor phase of the polymer blend. Functionalized graphene (f-GO) was achieved by reacting graphene oxide (GO) with various silanes under the aid of an ionic liquid. Ethylene/n-butyl acrylate/glycidyl methacrylate terpolymer elastomer (EBA-GMA) was introduced as the minor phase to tailor the interface of matrix/graphene through reactive compatibilization. GO particles were predominantly dispersed in PLA in a self-agglomerating pattern, while f-GO was preferentially located in the introduced rubber phase or at the PLA/EBA-GMA interfaces through the formation of the three-dimensional percolated structures, especially for these functionalized graphene with reactive groups. The selective localization of the f-GO also played a crucial role in stabilizing and improving the phase morphology of the PLA blend through reducing the interfacial tension between two phases. The establishment of the percolated network structures in the ternary system was responsible for the improved AC conductivity and better dielectric properties of the resulting nanocomposites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据