4.8 Article

Interfacial Interactions of Semiconductor with Graphene and Reduced Graphene Oxide: CeO2 as a Case Study

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 22, 页码 20350-20357

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am5058772

关键词

interfacial interaction; electronic structure; graphene and reduced graphene oxide; semiconductor; photocatalytic properties; density functional theory

资金

  1. Hunan Provincial Natural Science Foundation of China [12JJ3009]
  2. Changsha Science and Technology Plan Projects [k1403067-11]

向作者/读者索取更多资源

The pursuit of superb building blocks of light harvesting systems has stimulated increasing efforts to develop graphene (GR)-based semiconductor composites for solar cells and photocatalysts. One critical issue for GR-based composites is understanding the interaction between their components, a problem that remains unresolved after intense experimental investigation. Here, we use cerium dioxide (CeO2) as a model semiconductor to systematically explore the interaction of semiconductor with GR and reduced graphene oxide (RGO) with large-scale ab initio calculations. The amount of charge transferred at the interfaces increases with the concentration of O atoms, demonstrating that the interaction between CeO2 and RGO is much stronger than that between CeO2 and GR due to the decrease of the average equilibrium distance between the interfaces. The stronger interaction between semiconductor and RGO is expected to be general, as evidenced by the results of two paradigms of TiO2 and Ag3PO4 coupled with RGO. The interfacial interaction can tune the band structure: the CeO2(111)/GR interface is a type-I heterojunction, while a type-II staggered band alignment exists between the CeO2(111) surface and RGO. The smaller band gap, type-II heterojunction, and negatively charged O atoms on the RGO as active sites are responsible for the enhanced photoactivity of CeO2/RGO composite. These findings can rationalize the available experimental reports and enrich our understanding of the interaction of GR-based composites for developing high-performance photocatalysts and solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据