4.8 Article

Oxygen Sensitivity of Atomically Passivated CdS Nanocrystal Films

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 12, 页码 9517-9523

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am501906y

关键词

CdS nanocrystal films; photoconductivity; oxygen adsorption; surface passivation; oxygen sensing

资金

  1. European Union [298022, 614897]

向作者/读者索取更多资源

CdS nanocrystals (NCs) synthesized by colloidal chemistry methods have been intensively studied for various applications. However, little attention has been paid to the interaction between the oxygen molecules present in air and the NC surface, which has a strong influence on the electrical properties of NC films. Here, we discuss the effect of oxygen adsorption at the NC surface on the photoconductivity of CdS NC films that were treated by propyltrichlorosilane, which is known to replace the native ligands at the NC surface with chloride ions. The photocurrent voltage (Ply) characteristics of NC@Cl films recorded under oxygen atmosphere reveal a significant reduction in the photocurrent, as compared to those recorded under argon or vacuum. We demonstrate that this reduction can be related to adsorbed oxygen ions that effectively passivate the NC surface. This passivation reduces the free electron concentration and thereby reduces the photocurrent. Furthermore, we have investigated the light intensity dependence of the photocurrent dynamics of our devices in argon and in oxygen. These measurements confirm that the adsorption of oxygen is a photo-assisted process. Eventually, the potential of using our devices as oxygen sensors is assessed. A remarkable sensitivity of 35 is obtained at room temperature for 10% (concentration) oxygen flow, which is at least one order of magnitude higher than the results reported in the literature. Our work clarifies the mechanism of the photoconductivity reduction in CdS NC films upon oxygen adsorption and opens up opportunities of exploring such devices for gas sensing applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据