4.8 Article

Electrochemically Modulated Nitric Oxide (NO) Releasing Biomedical Devices via Copper(II)-Tri(2-pyridylmethyl)amine Mediated Reduction of Nitrite

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 6, 期 6, 页码 3779-3783

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am406066a

关键词

nitric oxide; electrochemical reduction of nitrite; antimicrobial catheters; thromboresistant catheters; modulated NO release; anti-biofilm

资金

  1. NIH [EB-000783]

向作者/读者索取更多资源

A controllable and inexpensive electrochemical nitric oxide (NO) release system is demonstrated to improve hemocompatibility and reduce bacterial biofilm formation on biomedical devices. Nitric oxide is produced from the electrochemical reduction of nitrite using a copper(II)-tri(2-pyridylmethyl)amine (Cu(II)TPMA) complex as a mediator, and the temporal profile of NO release can be modulated readily by applying different cathodic potentials. Single lumen and dual lumen silicone rubber catheters are employed as initial model biomedical devices incorporating this novel NO release approach. The modified catheters can release a steady, physiologically-relevant flux of NO for more than 7 days. Both single and dual lumen catheters with continuous NO release exhibit greatly reduced thrombus formation on their surfaces after short-term 7-h intravascular placement in rabbit veins (p < 0.02, n = 6). Three day in vitro antimicrobial experiments, in which the catheters are turned on for only 3 h of NO release each day, exhibit more than a 100-fold decrease in the amount of surface attached live bacteria (n = 5). These results suggest that this electrochemical NO generation system could provide a robust and highly effective new approach to improving the thromboresistance and antimicrobial properties of intravascular catheters and potentially other biomedical devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据