4.8 Article

Mechanics of Platelet-Reinforced Composites Assembled Using Mechanical and Magnetic Stimuli

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 5, 期 21, 页码 10794-10805

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am402975a

关键词

bioinspired composites; platelet-reinforced composites; magnetic alignment; hybrid materials; tailored microstructures; micrometer-sized platelets

向作者/读者索取更多资源

Current fabrication technologies of structural composites based on the infiltration of fiber weaves with a polymeric resin offer good control over the orientation of long reinforcing fibers but remain too cumbersome and slow to enable cost-effective manufacturing. The development of processing routes that allow for fine control of the reinforcement orientation and that are also compatible with fast polymer processing technologies remains a major challenge. In this paper, we show that bulk platelet-reinforced composites with tailored reinforcement architectures and mechanical properties can be fabricated through the directed-assembly of inorganic platelets using combined magnetic and mechanical stimuli. The mechanical performance and fracture behavior of the resulting composites under compression and bending can be deliberately tuned by assembling the platelets into designed microstructures. By combining high alignment degree and volume fractions of reinforcement up to 27 vol %, we fabricated platelet-reinforced composites that can potentially be made with cost-effective polymer processing routes while still exhibiting properties that are comparable to those of state-of-the-art glass-fiber composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据