4.8 Article

Synthesis of Uniform CdS Nanospheres/Graphene Hybrid Nanocomposites and Their Application as Visible Light Photocatalyst for Selective Reduction of Nitro Organics in Water

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 5, 期 10, 页码 4309-4319

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am4010286

关键词

CdS nanospheres (CdS NSPs); graphene (GR); electrostatic self-assembly; photocatalytic reduction; aromatic nitro organics

资金

  1. National Natural Science Foundation of China (NSFC) [21173045, 20903023]
  2. Award Program for Minjiang Scholar Professorship
  3. Natural Science Foundation (NSF) of Fujian Province for Distinguished Young Investigator Grant [2012J06003]
  4. Program for Changjiang Scholars and Innovative Research Team in Universities [PCSIRT0818]
  5. Program for Returned High-Level Overseas Chinese Scholars of Fujian province
  6. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

向作者/读者索取更多资源

We report the self-assembly of uniform CdS nanospheres/graphene (CdS NSPs/GR) hybrid nanocomposites via electrostatic interaction of positively charged CdS nanospheres (CdS NSPs) with negatively charged graphene oxide (GO), followed by GO reduction via a hydrothermal treatment. During this facile two-step wet chemistry process, reduced graphene oxide (RGO, also called GR) and the intimate interfacial contact between CdS NSPs and the GR sheets are achieved. Importantly, the CdS NSPs/GR nanocomposites exhibit a much higher photocatalytic performance than bare CdS NSPs toward selective reduction of nitro organics to corresponding amino organics under visible light irradiation. The superior photocatalytic performance of the CdS NSPs/GR nanocomposites can be attributed to the intimate interfacial contact between CdS NSPs and the GR sheets, which would maximize the excellent electron conductivity and mobility of GR that in turn markedly contributes to improving the fate and transfer of photogenerated charge carriers from CdS NSPs under visible light irradiation. Moreover, the photocorrosion of CdS and the photodegradation of GR can be efficiently inhibited. The excellent reusability of the CdS NSPs/GR nanocomposites can be attributed to the synergetic effect of the introduction of GR into the matrix of CdS NSPs and the addition of ammonium formate as quencher for photogenerated holes. It is hoped that our current work could promote us to efficiently harness such a simple and efficient self-assembly strategy to synthesize GR-based semiconductor composites with controlled morphology and, more significantly, widen the application of CdS/GR nanocomposite photocatalysts and offer new inroads into exploration and utilization of GR-based semiconductor nanocomposites as visible light photocatalysts for selective organic transformations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据