4.8 Article

Solvothermal One-Step Synthesis of Ni-Al Layered Double Hydroxide/Carbon Nanotube/Reduced Graphene Oxide Sheet Ternary Nanocomposite with Ultrahigh Capacitance for Supercapacitors

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 5, 期 12, 页码 5443-5454

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am4003843

关键词

layered double hydroxides; carbon tube; graphene nanosheet; ternary composite; supercapacitor; electrochemical property

资金

  1. Special Innovation Talents of Harbin Science and Technology [2011RFQXG016, 2012RFXXG104]
  2. Fundamental Research Funds of the Central University (HEUCFZ), Key Program of the Natural Science Foundation of Heilongjiang Province [ZD201219]
  3. Program of International S&T Cooperation special project [2013DFA50480]

向作者/读者索取更多资源

A Ni-Al layered double hydroxide (LDH), mutil-wall carbon nanotube (CNT), and reduced graphene oxide sheet (GNS) ternary nano-composite electrode material has been developed by a facile one-step ethanol solvothermal method. The obtained LDH/CNT/GNS composite displayed a three-dimensional (3D) architecture with flowerlike Ni-Al LDH/CNT nano-crystallites gradually self-assembled on GNS nanosheets. GNS was used as building blocks to construct 3D nanostructure, and the LDH/CNT nanoflowers in turn separated the two-dimensional (2D) GNS sheets, which preserved the high surface area of GNSs. Furthermore, the generated porous networks with a narrow pore size distribution in the LDH/CNT/GNS composite were also demonstrated by the N-2 adsorption/desorption experiment. Such morphology would be favorable to improve the mass transfer and electrochemical action of the electrode. As supercapacitor electrode material, the LDH/CNT/GNS hybrid exhibited excellent electrochemical performance, including ultrahigh specific capacitance (1562 F/g at 5 mA/cm(2)), excellent rate capability, and long-term cycling performance, which could be a promising energy storage/conversion material for supercapacitor application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据