4.8 Article

Origin of Electrochromism in High-Performing Nanocomposite Nickel Oxide

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 5, 期 9, 页码 3643-3649

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am400105y

关键词

electrochromism; multicomponent; nickel oxide; X-ray absorption spectroscopy; lithium intercalation

资金

  1. U.S. Department of Energy [DE-AC36-08-GO28308]
  2. National Renewable Energy Laboratory as part of the DOE Office of Energy Efficiency and Renewable Energy Office of Building Technologies Program

向作者/读者索取更多资源

Electrochromic effects of transition metal oxides provide a great platform for studying lithium intercalation chemistry in solids. Herein, we report on an electronically modified nanocomposite nickel oxide (i.e., Li2.34NiZr0.28Ox) that exhibits significantly improved electrochromic performance relative to the state-of-the-art inorganic electrochromic metal oxides in terms of charge/discharge kinetics, bleached-state transparency, and optical modulation. The knowledge obtained from O K-edge X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) suggests that the internally grown lithium peroxide (i.e., Li2O2) species plays a major role in facilitating charge transfer thus enabling optimal electrochromic performance. This understanding is relevant to recent theoretical studies concerning conductivity in Li2O2 for lithium air batteries (as cited in the main text). Furthermore, we elucidate the electrochromism in modified nickel oxide in lithium ion electrolyte with the aid of Ni K-edge XAS and Ni L-edge XAS studies. The electrochromism in the nickel oxide materials arises from the reversible formation of hole states on the NiO6 units, which then impacts the Ni oxidation state through the Ni3d-O2p hybridization states. This study sheds light on the lithium intercalation chemistry for general energy storage and semiconductor applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据