4.8 Article

Surface Patterning of Mesoporous Niobium Oxide Films for Solar Energy Conversion

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 5, 期 8, 页码 3469-3474

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am400598u

关键词

niobium oxide; surface patterning soft-lithography; photonic crystal; dye-sensitized solar cell

资金

  1. UNC EFRC: Center for Solar Fuels, an Energy Frontier Research Center
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001011]

向作者/读者索取更多资源

An array of periodic surface features were patterned on mesoporous niobium oxide films by a soft-lithographic technique with the goal of constructing a photonic crystal (PC) structure on the back side of the oxide. The oxide films, fabricated by mixing sol-gel derived niobium oxide nanoparticles and hydroxypropyl cellulose, were employed as photoelectrodes in dye sensitized solar cells (DSSCs), and their performance evaluated against their flat counterparts. The surface patterns were imprinted using a photocurable perfluoropolyether (PFPE) soft-replica of a silicon master with a two-dimensional array of cylindrical posts (200 nm (D) x 200 nm (H)) in hexagonal geometry. The PC on the niobium oxide surface caused large changes in optical measurements, particularly in the blue wavelengths. To evaluate the optical effect on solar energy conversion, the incident photon-to-current conversion efficiency (IPCE) was measured in the patterned devices and the control group. The IPCE of patterned niobium oxide anodes exhibited a relative enhancement in photocurrent generation over the wavelength range corresponding to the higher absorption in optical measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据