4.8 Article

High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 4, 期 5, 页码 2801-2810

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am300455d

关键词

graphene hydrogel; manganese oxide nanoplates; cathodic electrodeposition; asymmetric supercapacitor; energy storage

资金

  1. program of Nanyang Assistant Professorship
  2. Nanyang Technological University, Singapore

向作者/读者索取更多资源

We have successfully fabricated an asymmetric supercapacitor with high energy and power densities using graphene hydrogel (GH) with 3D interconnected pores as the negative electrode and vertically aligned MnO2 nanoplates on nickel foam (MnO2-NF) as the positive electrode in a neutral aqueous Na2SO4 electrolyte. Because of the desirable porous structure, high specific capacitance and rate capability of GH and MnO2-NF, complementary potential window of the two electrodes, and the elimination of polymer binders and conducting additives, the asymmetric supercapacitor can be cycled reversibly in a wide potential window of 0-2.0 V and exhibits art energy density of 23.2 Wh kg(-1) with a power density of 1.0 kW kg(-1). Energy density of the asymmetric supercapacitor is significantly improved in comparison with those of symmetric supercapacitors based on GH (5.5 Wh kg(-1)) and MnO2-NF (6.7 Wh kg(-1)). Even at a high power density of 10.0 kW kg(-1), the asymmetric supercapacitor can deliver a high energy density of 14.9 Wh kg(-1). The asymmetric supercapacitor also presents stable cycling performance with 83.4% capacitance retention after 5000 cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据