4.8 Article

Unzipped Multiwalled Carbon Nanotube Oxide/Multiwalled Carbon Nanotube Hybrids for Polymer Reinforcement

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 4, 期 11, 页码 5956-5965

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am301623t

关键词

reinforcement; multiwalled carbon nanotube; unzipped multiwalled carbon nanotube oxide

资金

  1. National Nature Science Foundation of China [50973062]

向作者/读者索取更多资源

Multiwalled carbon nanotubes (MWNTs) have been widely used as nanofillers for polymer reinforcement. However, it has been restricted by the limited available interface area of MWNTs in the polymer matrices. Oxidation unzipping of MWNTs is an effective way to solve this problem. The unzipped multiwalled carbon nanotube oxides (UMCNOs) exhibit excellent enhancement effect with low weight fractions, but agglomeration of UMCNOs at a relatively higher loading still hampered the mechanical reinforcement of polymer composites. In this paper, we interestingly found that the dispersion of UMCNOs in polymer matrices can be significantly improved with the combination of pristine MWNTs. The hybrids of MWNTs and UMCNOs (U/Ms) can be easily obtained by adding the pristine MWNTs into the UMCNOs aqueous dispersion, followed by sonication. With a pi-stacking interaction, the UMCNOs were attached onto the outwalls of MWNTs. The morphologies and structure of the U/Ms were characterized by several measurements. The mechanical testing of the resultant poly(vinyl alcohol) (PVA)-based composites demonstrated that the U/Ms can be used as ideal reinforcing fillers. Compared to PVA, the yield strength and Young's modulus of U/M-PVA composites with a loading of 0.7 wt % of the U/Ms approached similar to 145.8 MPa and 6.9 GPa, respectively, which are increases of similar to 107.4% and similar to 122.5%, respectively. The results of tensile tests demonstrated that the reinforcement effect of U/Ms is superior to the individual UMCNOs and MWNTs, because of the synergistic interaction of UMCNOs and MWNTs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据