4.8 Article

Laser-Induced Forward Transfer of Polymer Light-Emitting Diode Pixels with Increased Charge Injection

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 3, 期 2, 页码 309-316

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am100943f

关键词

laser deposition; LIFT; triazene polymer; PLED pixels

资金

  1. Swiss National Science Foundation
  2. EU

向作者/读者索取更多资源

Laser-induced forward transfer (LIFT) has been used to print 0.6 mm x 0.5 mm polymer light-emitting diode (PLED) pixels with poly[2-methoxy, 5-(2-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) as the light-emitting polymer. The donor substrate used in the LIFT process is covered by a sacrificial triazene polymer (TP) release layer on top of which the aluminium cathode and functional MEH-PPV layers are deposited. To enhance electron injection into the MEH-PPV layer, a thin poly-(ethylene oxide) (PEO) layer on the Al cathode or a blend of MEH-PPV and PEO was used. These donor substrates have been transferred onto both plain indium tin oxide (ITO) and bilayer ITO/PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) blend) receiver substrates to create the PLED pixels. For comparison, devices were fabricated in a conventional manner on ITO substrates coated with a PEDOT:PSS hole-transporting layer. Compared to multilayer devices without PEO, devices with ITO/PEDOT:PSS/MEH-PPV:PEO blend/Al architecture show a 100 fold increase of luminous efficiency (LE) reaching a maximum of 0.45 cd/A for the blend at a brightness of 400 cd/m(2). A similar increase is obtained for the polymer light-emitting diode (PLED) pixels deposited by the LIFT process, although the maximum luminous efficiency only reaches 0.05 cd/A for MEH-PPV:PEO blend, which we have attributed to the fact that LIFT transfer was carried out in an ambient atmosphere. For all devices, we confirm a strong increase in device performance and stability when using a PEDOT:PSS film on the ITO anode. For PLEDs produced by LIFT, we show that a 25 nm thick PEDOT:PSS layer on the ITO receiver substrate considerably reduces the laser fluence required for pixel transfer from 250 mJ/cm(2) without the layer to only 80 mJ/cm2 with the layer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据