4.8 Article

Transforming the Fabrication and Biofunctionalization of Gold Nanoelectrode Arrays into Versatile Electrochemical Glucose Biosensors

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 3, 期 5, 页码 1765-1770

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am200299h

关键词

nanoelectrode arrays; self-assembled monolayers; glucose biosensor; glucose oxidase; porous anodic alumina

资金

  1. Office of Naval Research
  2. National Science Foundation
  3. Purdue Research Foundation

向作者/读者索取更多资源

High-density arrays of conducting nanoelectrodes (i.e., nanoelectrode arrays [NEAs]) have been developed on the surface of a single electrode for numerous electrochemical sensing paradigms. However, a scalable fabrication technique and robust biofunctionalization protocol are oftentimes lacking and thus many NEA designs have limited efficacy and overall commercial viability M biosensing applications. In this report, we develop a lithography-free nanofabrication protocol to create large arrays of Au nanoelectrodes on a silicon wafer via a porous anodic alumina template. To demonstrate their effectiveness as electrochemical glucose biosensors, alkanethiol self-assembled monolayers (SAMs) are used to covalently attach the enzyme glucose oxidase to the Au NBA surface for subsequent glucose sensing. The sensitivity and linear sensing range of the biosensor is controlled by introducing higher concentrations of long-chain SAMs (11-mercaptoundecanoic acid: MUA) with short-chain SAMs (3-mercaptopropionic acid: MPA) into the enzyme immobilization scheme, This facile NBA fabrication protocol (that is well-suited for integration into electronic devices) and biosensor performance controllability (via the mixed-length enzyme-conjugated SAMs) transforms the Au NEAs into versatile glucose biosensors. Thus these Au NEAs could potentially be used in important real-word applications such as in health-care and bioenergy where biosensors with very distinct sensing capabilities are needed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据