4.8 Article

Development of a Low-Resource RNA Extraction Cassette Based on Surface Tension Valves

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 3, 期 6, 页码 2161-2168

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am2004009

关键词

sample preparation; low resource; nucleic acid diagnostics; RNA extraction; RNA-silica adsorption; RNA purification; respiratory syncytial virus; surface tension valve

资金

  1. Vanderbilt University
  2. NIH [R21 EB009235]
  3. NIH, Heart, Lung, and Blood Institute [T32 HL007751]

向作者/读者索取更多资源

Nucleic acid-based diagnostics are highly sensitive and specific, but are easily disrupted by the presence of interferents in biological samples. In a laboratory or hospital setting, the influence of these interferents can be minimized using an RNA or DNA extraction procedure prior to analysis. However, in low-resource settings, limited access to specialized instrumentation and trained personnel presents challenges that impede sample preparation. We have developed a self-contained nucleic acid extraction cassette suitable for operation in a low-resource setting. This simple design contains processing solutions preloaded within a continuous length of 1.6 mm inner diameter Tygon tubing. Processing solutions are separated by air gaps and held in place during processing by the surface tension forces at the liquid-air interface, viz, surface tension valves. Nucleic acids preferentially adsorbed to silica-coated magnetic particles are separated from sample interferents using an external magnet to transfer the nucleic acid biomarker through successive solutions to precipitate, wash and elute in the final cassette solution. The efficiency of the extraction cassette was evaluated using quantitative reverse transcriptase PCR (qRT-PCR) following extraction of respiratory syncytial virus (RSV) RNA. RNA was recovered from TE buffer or from lysates of RSV infected HEp-2 cells with 55 and 33% efficiency, respectively, of the Qiagen RNeasy kit. Recovery of RSV RNA from RSV infected HEp-2 cells was similar at 30% of the RNeasy kit. An overall limit of detection after extraction was determined to be nearly identical (97.5%) to a laboratory-based commercially available kit. These results indicate that this extraction cassette design has the potential to be an effective sample preparation device suitable for use in a low-resource setting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据