4.8 Article

Interface Architecture Determined Electrocatalytic Activity of Pt on Vertically Oriented TiO2 Nanotubes

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 3, 期 2, 页码 147-151

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am1012563

关键词

TiO2 nanotubes; Pt; Cu replacement; methanol oxidation; fuel cell; XPS; XAS; cationic Pt

资金

  1. Department of Energy [DE-FG02-97ER14799]
  2. RAK-CAM Foundation
  3. U.S. Department of Energy (DOE) [DE-FG02-97ER14799] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The surface atomic structure and chemical state of Pt is consequential in a variety of surface-intensive devices. Herein we present the direct interrelationship between the growth scheme of Pt films, the resulting atomic and electronic structure of Pt species, and the consequent activity for methanol electro-oxidation in Pt/TiO2 nanotube hybrid electrodes. X-ray photoelectron spectroscopy (XPS) and X-ray absorption. spectroscopy (XAS) measurements were performed to relate the Observed electrocatalytic activity to the oxidation state and the atomic structure of the deposited Pt species. The atomic structure as well as the oxidation state of the deposited Pt was found to depend on the pretreatment of the TiO2 nanotube surfaces with electrodeposited Cu. Pt growth through Cu replacement increases Pt dispersion, and a separation of surface Pt atoms beyond a threshold distance from the TiO2 substrate renders them metallic, rather than cationic. The increased dispersion and the metallic character of Pt results in strongly enhanced electrocatalytic activity toward methanol oxidation. This study points to a general phenomenon whereby the growth scheme and the substrate-to-surface-Pt distance dictates the chemical state of the surface Pt atoms, and thereby, the performance of Pt-based surface-intensive devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据