4.8 Article

Noncovalently Functionalized Multiwalled Carbon Nanotubes by Chitosan-Grafted Reduced Graphene Oxide and Their Synergistic Reinforcing Effects in Chitosan Films

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 3, 期 12, 页码 4819-4830

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am2013135

关键词

reduced graphene oxide; multiwalled carbon nanotubes; noncovalent; chitosan; nanocomposites; mechanical properties

向作者/读者索取更多资源

Water-soluble chitosan-grafted reduced graphene oxide (CS-rGO) sheets are successfully synthesized via amidation reaction and chemical reduction. CS-rGO possesses not only remarkable graphitic property but also favorable water solubility, which is found to be able to effectively disperse multiwalled carbon nanotubes (MWCNTs) in acidic solutions via noncovalent interaction. The efficiency of CS-rGO in dispersing MWCNTs is tested to be higher than that of plain graphene oxide (GO) and a commercial surfactant, sodium dodecyl sulfate (SDS). With incorporation of 1 wt % CS-rGO dispersed MIATCNTs (CS-rGO-MWCNTs), the tensile modulus, strength and toughness of the chitosan (CS) nanocomposites can be increased by 49, 114, and 193%, respectively. The reinforcing and toughening effects of CS-rGO-MWCNTs are much more prominent than those of single-component fillers, such as MWCNTs, GO, and CS-rGO. Noncovalent pi-pi interactions between graphene sheets and nanotubes and hydrogen bonds between grafted CS and the CS matrix are responsible for generating effective load transfer between CS-rGO-MWCNTs and the CS matrix, causing the simultaneously increased strength and toughness of the nanocomposites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据