4.8 Article

Macroscopic Frictional Properties of Poly(1-(2-methacryloyloxy)ethy1-3-butyl Imidazolium Bis(trifluoromethanesulfonyl)-imide) Brush Surfaces in an Ionic Liquid

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 2, 期 4, 页码 1120-1128

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am9009082

关键词

ionic liquid; polymer brush; tribology; friction coefficient; surface-initiated polymerization

资金

  1. Ministry of Education, Culture, Science, Sports and Technology of Japan [19750098]
  2. Grants-in-Aid for Scientific Research [19750098] Funding Source: KAKEN

向作者/读者索取更多资源

Poly(1-(2-methacryloyloxy)ethyl-3-butylimidazolium bis(trifluoromethanesulfonyl)imide) (PMIS) and poly(n-hexyl methacrylate) (PHMA) brushes were prepared on initiator-immobilized silicon wafers by surface-initiated atom transfer radical polymerization. The macroscopic frictional properties of the brushes were determined using a ball-on-flat type tribotester under reciprocating motion in a dry nitrogen atmosphere, water, methanol, and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMImTFSI). When the PMIS and PHMA brushes were exposed to EMImTFSI, the friction coefficient of the former was lower than that of the latter. It is thought that the high affinity of the PMIS brush to EMImTFSI led to a reduction in the interaction between the brush and the friction probe, which resulted in a low friction coefficient. The friction force of the PMIS brush in EMImTFSI was proportional to a normal load in the range of 0.2-0.98 N. The friction coefficient gradually decreased to 0.01 with an increase in the sliding velocity from 1 x 10(-4) to 1 x 10(-1) m s(-1). The friction coefficient of the PMIS brush exhibited low magnitude until 800 friction cycles in the dry nitrogen atmosphere, whereas the PHMA brush was abraded away within 150 friction cycles. The XPS spectra of the worn surfaces on the PMIS brush suggested that the brush was gradually abraded by friction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据