4.7 Article

Iterative Training of Dynamic Skills Inspired by Human Coaching Techniques

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 34, 期 1, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/2682626

关键词

Algorithms; Design; Character animation; physics-based animation; optimal control

资金

  1. National Institute of Health [NIH-1NS069655-04]
  2. National Science Foundation [NSF1064983]

向作者/读者索取更多资源

Inspired by how humans learn dynamic motor skills through a progressive process of coaching and practices, we introduce an intuitive and interactive framework for developing dynamic controllers. The user only needs to provide a primitive initial controller and high-level, human-readable instructions as if s/he is coaching a human trainee, while the character has the ability to interpret the abstract instructions, accumulate the knowledge from the coach, and improve its skill iteratively. We introduce control rigs as an intermediate layer of control module to facilitate the mapping between high-level instructions and low-level control variables. Control rigs also utilize the human coach's knowledge to reduce the search space for control optimization. In addition, we develop a new sampling-based optimization method, Covariance Matrix Adaptation with Classification (CMA-C), to efficiently compute-control rig parameters. Based on the observation of human ability to learn from failure, CMA-C utilizes the failed simulation trials to approximate an infeasible region in the space of control rig parameters, resulting a faster convergence for the CMA optimization. We demonstrate the design process of complex dynamic controllers using our framework, including precision jumps, turnaround jumps, monkey vaults, drop-and-rolls, and wall-backflips.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据