4.2 Article

Fluigi: Microfluidic Device Synthesis for Synthetic Biology

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/2660773

关键词

Synthetic biology; microfluidics; genetic circuits

资金

  1. Clare Booth Luce Graduate Fellowship

向作者/读者索取更多资源

One goal of synthetic biology is to design and build genetic circuits in living cells for a range of applications. Our incomplete knowledge of the effects of metabolic load and biological crosstalk on the host cell make it difficult to construct multilevel genetic logic circuits in a single cell, limiting the scalability of engineered biological systems. Microfluidic technologies provide reliable and scalable construction of synthetic biological systems by allowing compartmentalization of cells encoding simple genetic circuits and the spatiotemporal control of communication among these cells. This control is achieved via valves on the microfluidics chip which restrict fluid flow when activated. We describe a Computer Aided Design (CAD) framework called Fluigi for optimizing the layout of genetic circuits on a microfluidic chip, generating the control sequence of the associated signaling fluid valves, and simulating the behavior of the configured biological circuits. We demonstrate the capabilities of Fluigi on a set of Boolean algebraic benchmark circuits found in both synthetic biology and electrical engineering and a set of assay-based benchmark circuits. The integration of microfluidics and synthetic biology has the capability to increase the scale of engineered biological systems for applications in DNA assembly, biosensors, and screening assays for novel orthogonal genetic parts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据