4.6 Article

Increased Integration of Transplanted CD73-Positive Photoreceptor Precursors into Adult Mouse Retina

期刊

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
卷 52, 期 9, 页码 6462-6471

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.11-7399

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [SFB 655]
  2. charity ProRetina e.V.

向作者/读者索取更多资源

PURPOSE. Retinal degeneration initiated by loss of photoreceptors is the prevalent cause of visual impairment and blindness in industrialized countries. Transplantation of photoreceptor cells represents a possible replacement strategy. This study determined that identification of cell surface antigens can assist in enriching photoreceptor precursors for transplantation. METHODS. The expression profile of rod photoreceptors at postnatal day 4 was investigated by microarray analysis to identify photoreceptor-specific cell surface antigens. For enrichment of transplantable photoreceptors, neonatal retinas from rod photoreceptor-specific reporter mice were dissociated, and the rods were purified by magnetic associated cell sorting (MACS) with CD73 antibodies. MAC-sorted cell fractions were transplanted into the subretinal space of adult wild-type mice. The number of rod photoreceptors contained in unsorted, CD73-negative, and CD73-positive cell fractions were quantified in vitro and after grafting in vivo. RESULTS. Microarray analysis revealed that CD73 is a marker for rod photoreceptors. CD73-based MACS resulted in enrichment of rods to 87%. Furthermore, in comparison with unsorted cell fractions, CD73-positive MAC-sorted cells showed an approximately three-fold increase in the number of integrated, outer segment-forming photoreceptors after transplantation. CONCLUSIONS. CD73-based MACS is a reliable method for the enrichment of integrating photoreceptors. Purification via cell surface markers represents a new tool for the separation of transplantable photoreceptor precursors from a heterogeneous cell population, avoiding the need of reporter gene expression in target cells. (Invest Ophthalmol Vis Sci. 2011; 52: 6462-6471) DOI: 10.1167/iovs.11-7399

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据