4.8 Review

Development of New Thioester Equivalents for Protein Chemical Synthesis

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 46, 期 11, 页码 2475-2484

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar400012w

关键词

-

资金

  1. National Basic Research Program of China (973 program) [2013CB932800]
  2. National Natural Science Foundation of China [20932006]
  3. National Science Fund for Distinguished Young Scholars
  4. Specialized Research Fund for the Doctoral Program of Higher Education [20120002130004]

向作者/读者索取更多资源

The chemical synthesis of proteins provides synthetic chemists with an interesting challenge and supports biological research through the generation of proteins that are not produced naturally. Although it offers advantages, studies of solid phase peptide synthesis have established limits for this technique: researchers can only prepare peptides up to 50 amino adds in length in sufficient yields and purity. Therefore, researchers have developed techniques to condense peptide segments to build longer polypeptide chains. The method of choice for chemical synthesis of these longer polypeptides is convergent condensation of unprotected protein fragments by the native chemical ligation reaction in aqueous buffer. As researchers apply this strategy to increasingly difficult protein targets, they have needed to overcome diverse problems such as the requirement for a thiol-containing amino add residue at the ligation site, the difficulty in synthesizing thioester intermediates under mild conditions, and the challenge of condensing multiple peptide segments with higher efficiency. In this Account, we describe our research toward the development of new thioester equivalents for protein chemical synthesis. We have focused on a simple idea of finding new chemistry to selectively convert a relatively low-energy acyl group such as an ester or amide to a thioester under mild conditions. We have learned that this seemingly unfavorable acyl substitution process can occur by the coupling of the ester or amide with another energetically favorable reaction, such as the irreversible hydrolysis of an enamine or condensation of a hydrazide with nitrous add. Using this strategy, we have developed several new thioester equivalents that we can use for the condensation of protein segments. These new thioester equivalents not only improve the efficiency for the preparation of the intermediates needed for protein chemical synthesis but also allow for the design of new convergent routes for the condensation of multiple protein fragments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据