4.8 Review

Supramolecular Sensing with Phosphonate Cavitands

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 46, 期 2, 页码 399-411

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar300178m

关键词

-

资金

  1. EC through the ITN Project FINELUMEN
  2. SEC project DIRAC
  3. ICT project BION
  4. MIUR
  5. INSTM
  6. INSTM and CARIPARMA

向作者/读者索取更多资源

Molecular recognition is a recurrent theme in chemical sensing because of the importance of selectivity for sensor performances. The popularity of molecular recognition in chemical sensing has resulted from the progress made in mastering weak interactions, which has enabled the design of synthetic receptors according to the analyte to be detected. However, the availability of a large pool of modular synthetic receptors so far has not had a significant impact on sensors used in the real world. This technological gap has emerged because of the difficulties in transferring the intrinsic molecular recognition properties of a given receptor from solution to interfaces and In finding high fidelity transduction modes for the recognition event. This Account focuses on the ways to overcome these two bottlenecks, and we recount our recent efforts to produce highly selective supramolecular sensors using phosphonate cavitands as receptors. Through two examples, we present an overview of the different operating strategies that are implemented depending on whether the interface is vapor-solid or liquid-solid. First we describe the selective detection of short chain aliphatic alcohols in the vapor phase. In this example, we solved a key issue common to all sensors for organic vapors: the dissection of the specific interaction (between cavitand and the alcohol) from ubiquitous nonspecific dispersion Interactions (between the analytes and interferents In the solid layer). We removed responses resulting from the nonspecific Interactions of the analytes with interferents by directly connecting the recognition event at the interface to the transduction mechanism (photoinduced charge transfer). The second example addresses the specific detection of sarcoslne in urine. Recent research has suggested that sarcosine can serve as reliable biomarker of the aggressive forms of prostate cancer. Tetraphosphonate cavitands can complex N-methyl ammonium salts with impressive selectivity in solution, and we used this property as a starting point. The sensor implementation requires that we first graft the cavitand onto silicon and gold surfaces as monolayers. The exclusive recognition of sarcosine by these supramolecular sensors originates from their operation in aqueous environments, where synergistic multiple interactions with the phosphonate cavitand are possible only for N-methyl ammonium derivatives. We couple that selectivity with detection modes that probe the strength of the complexation either directly (microcantilever) or via exchange with molecules that have comparable affinity for the cavity (fluorescence dye displacement).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据