4.8 Review

Exploiting the Reversible Covalent Bonding of Boronic Acids: Recognition, Sensing, and Assembly

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 46, 期 2, 页码 312-326

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar300130w

关键词

-

资金

  1. EPSRC
  2. Royal Society
  3. Leverhulme Trust
  4. Japan Society for the Promotion of Science (JSPS)
  5. GB Sasakawa Foundation
  6. Daiwa Foundation
  7. University of Birmingham
  8. University of Bath

向作者/读者索取更多资源

Boronic acids can interact with Lewis bases to generate boronate anions, and they can also bind with diol units to form cyclic boronate esters. Boronic acid based receptor designs originated when Lorand and Edwards used the pH drop observed upon the addition of saccharides to boronic acids to determine their association constants. The inherent acidity of the boronic acid is enhanced when 1,2-, 1,3-, or 1,4-diols react with boronic acids to form cyclic boronic esters (5, 6, or 7 membered rings) in aqueous media, and these interactions form the cornerstone of diol-based receptors used in the construction of sensors and separation systems. In addition, the recognition of saccharides through boronic acid complex (or boronic ester) formation often relies on an interaction between a Lewis acidic boronic acid and a Lewis base (proximal tertiary amine or anion). These properties of boronic acids have led to them being exploited in sensing and separation systems for anions (Lewis bases) and saccharides (diols). The fast and stable bond formation between boronic acids and diols to form boronate esters can serve as the basis for forming reversible molecular assemblies. In spite of the stability of the boronate esters' covalent B-O bonds, their formation is reversible under certain conditions or under the action of certain external stimuli. The reversibility of boronate ester formation and Lewis acid-base interactions has also resulted in the development and use of boronic acids within multicomponent systems. The dynamic covalent functionality of boronic acids with structure-directing potential has led researchers to develop a variety of self-organizing systems including macrocycles, cages, capsules, and polymers. This Account gives an overview of research published about boronic acids over the last 5 years. We hope that this Account will inspire others to continue the work on boronic acids and reversible covalent chemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据