4.8 Review

Hierarchical Nanostructured Carbons with Meso-Macroporosity: Design, Characterization, and Applications

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 46, 期 7, 页码 1397-1406

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar300253f

关键词

-

资金

  1. NRF [NRF 2010-0029245]
  2. Global Frontier R&D Program on Center for Multiscale Energy System [NRF 2011-0031571]
  3. Ministry of Education, Science and Technology through NRF of Korea
  4. National Research Foundation of Korea [2010-0029245, 2011-0031571] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Nanostructured porous carbon materials have diverse applications including sorbents, catalyst supports for fuel cells, electrode materials for capacitors, and hydrogen storage systems. When these materials have hierarchical porosity, interconnected pores of different dimensions, their potential application is increased. Hierarchical nanostructured carbons (HNCs) that contain 3D-interconnected macroporous/mesoporous and mesoporous/microporous structures have enhanced properties compared with single-sized porous carbon materials, because they have improved mass transport through the macropores/mesopores and enhanced selectivity and increased specific surface area on the level of fine pore systems through mesopores/micropores. The HNCs with macro/mesoporosity are of particular interest because chemists can tailor specific applications through controllable synthesis of HNCs with designed nanostructures. An efficient and commonly used technique for creating HNCs is nanocasting, a technique that first involves the creation of a sacrificial silica template with hierarchical porous nanostructure and then the impregnation of the silica template with an appropriate carbon source. This is followed by carbonization of the filled carbon precursor, and subsequent removal of the silica template. The resulting HNC is an inverse replica of its parent hierarchical nanostructured silica (HNS). Through such nanocasting, scientists can create different HNC frameworks with tailored pore structures and narrow pore size distribution. Generally, HNSs with specific structure and 3D-interconnected porosity are needed to fabricate HNCs using the nanocasting strategy. However, how can we fabricate a HNS framework with tailored structure and hierarchical porosity of meso-macropores? This Account reports on our recent work in the development of novel HNCs and their interesting applications. We have explored a series of strategies to address the challenges in synthesis of HNSs and HNCs. Through careful control of experimental parameters, we found we could readily create new HNSs and HNCs with tailored structure and hierarchical porosity. In this Account, we describe the applications of the HNCs in low-temperature fuel cells, in Li ion batteries, in quantum-dot-sensitized solar cells (QDSSCs) and as hydrogen storage materials. Fuel cell and QDSSC polarization performance data reveal that both the ordered HNC and spherical HNC with uniform macro- and mesoporosity demonstrate superior catalyst support effect and considerably enhanced photovoltaic performance due to their incredible structural characteristics. For hydrogen and lithium storage applications, primary experimental results show that spherical HNCs with uniform macroporous core/mesoporous shell and ordered HNC are highly beneficial in terms of a high hydrogen (or Li) uptake, good rate capability and excellent cycling retainability. These data suggest that the innovative HNCs with tailored nanostructure may find promising applications in the rapid and efficient storage of hydrogen (or Li).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据