4.8 Review

Access to Ultralarge-Pore Ordered Mesoporous Materials through Selection of Surfactant/Swelling-Agent Micellar Templates

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 45, 期 10, 页码 1678-1687

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar200343s

关键词

-

资金

  1. NSF [DMR-0907487, CHE-0723028]
  2. American Chemical Society Petroleum Research Fund [49093-DNI5]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Materials Research [0907487] Funding Source: National Science Foundation

向作者/读者索取更多资源

The surfactant-micelle-templating method has revolutionized the synthesis of high-surface-area materials with mesopores (diameter 2-50 nm) that have well-defined shapes and sizes. One of the major benefits of this method is the ability to tailor the pore size by manipulating the size of the templating micelles. The uniform pores typically form ordered arrays. Although the choice of surfactant can tune the size of the micelles, It is more convenient to use a single surfactant and tailor the micelle size by adding a swelling agent Unfortunately, the swelling agent tends to induce disorder or heterogeneity in the resulting structures, which can make this approach difficult to Implement. We hypothesized that the swelling agents that are moderately solubilized within the micelles of a particular surfactant could generate well-defined micelle-templated structures with significantly enlarged pores. Using this idea, we could judiciously select candidate swelling agents from families of compounds whose extent of solubilization in the surfactant micelles systematically changes with variations in the compound structure. Alkyl-substituted benzenes proved very useful as swelling agents, because their extent of solubilization in micelles of common Pluronic surfactants (EOmPOnEOm; EO = ethylene oxide, PO = propylene oxide) significantly increases as the number or size of alkyl substituents decreases. On the basis of these principles, we identified 1,3,5-triisopropylbenzene and cyclohexane as swelling agents for the synthesis of ultralarge-pore SBA-15 silica (pore diameter up to 26 nm) and organosilicas with 2-D hexagonal structures of cylindrical mesopores. Moreover, we used xylene, ethylbenzene, and toluene as swelling agents for the synthesis of large-pore (pore diameter up to 37 nm) face-centered cubic silicas and organosilicas with spherical mesopores. During the early stages of the synthesis, the entrances to large cylindrical and spherical mesopores of these materials were much smaller than the inner pore diameter. Therefore we can often use calcination at sufficiently high temperatures (400-950 degrees C) to produce dosed-pore silicas. Using hydrothermal treatments, we can obtain materials with large pore entrance sizes. In Pluronic-templated synthesis, we observed the propensity for formation of single-micelle-templated nanoparticles as the ratio of the framework precursor to surfactant decreased, and this process afforded organosilica nanotubes and uniform hollow spheres with inner diameters up to similar to 21 nm. Consequently, the adjustment of variables in the micelle-templated synthesis allows researchers to tailor the pore size and connectivity and to form either periodic pore arrays or individual nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据