4.8 Review

Metal Complexes as DNA Intercalators

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 44, 期 5, 页码 349-359

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar100140e

关键词

-

资金

  1. NSF [20871069, 20833006]
  2. JSSF [BK2008428]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  4. ERC [247450]
  5. EPSRC
  6. Science City (ERDF/AWM)

向作者/读者索取更多资源

DNA has a strong affinity for many heterocyclic aromatic dyes, such as acridine and its derivatives. Lerman in 1961 first proposed intercalation as the source of this affinity, and this mode of DNA binding has since attracted considerable research scrutiny. Organic intercalators can inhibit nucleic add synthesis in vivo, and they are now common anticancer drugs In clinical therapy. The covalent attachment of organic intercalators to transition metal coordination complexes, yielding metallointercalators, can lead to novel DNA interactions that influence biological activity. Metal complexes with a-bonded aromatic side arms can act as dual-function complexes: they bind to DNA both by metal coordination and through intercalation of the attached aromatic ligand. These aromatic side arms introduce new modes of DNA binding involving mutual interactions of functional groups held in dose proximity. The biological activity of both ds- and trans-diamine Pt-II complexes is dramatically enhanced by the addition of sigma-bonded intercalators. We have explored a new class of organometallic piano-stool Ru-II and Os-II arene anticancer complexes of the type [(eta(6)-arene)Ru/Os(XY)Cl](+). Here XY is, for example, ethylenediamine (en), and the arene ligand can take many forms, including tetrahydroanthracene, biphenyl, or p-cymene. Arene-nucleobase stacking interactions can have a significant influence on both the kinetics and thermodynamics of DNA binding. In particular, the cytotoxic activity, conformational distortions, recognition by DNA-binding proteins, and repair mechanisms are dependent on the arene. A major difficulty in developing anticancer drugs is cross-resistance, a phenomenon whereby a cell that is resistant to one drug is also resistant to another drug in the same class. These new complexes are non-cross-resistant with cisplatin towards cancer cells: they constitute a new class of anticancer agents, with a mechanism of action that differs from the anticancer drug cisplatin and its analogs. The Ru-arene complexes with dual functions are more potent towards cancer cells than their nonintercalating analogs. In this Account, we focus on recent studies of dual-function organometallic Ru-II- and Os-II-arene complexes and the methods used to detect arene DNA intercalation. We relate these interactions to the mechanism of anticancer activity and to structure activity relationships. The interactions between these complexes and DNA show dose similarities to those of covalent polycydic aromatic cardnogens, especially to N7-alkylating intercalation compounds. However, Ru-arene complexes exhibit some new features. Classical intercalation and base extrusion next to the metallated base is observed for {(eta(6)-biphenyl)Ru(ethylenediamine)}(2+) adducts of a 14-mer duplex, while penetrating arene intercalation occurs for adducts of the nonaromatic bulky intercalator {(eta(6)-tetrahydroanthracene)Ru(ethylenediamine)}(2+) with a 6-mer duplex. The introduction of dual-function Ru arene complexes introduces new mechanisms of antitumor activity, novel mechanisms for attack on DNA, and new concepts for developing structure activity relationships. We hope this discussion will stimulate thoughtful and focused research on the design of anticancer chemotherapeutic agents using these unique approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据