4.8 Review

Plasmonic Antenna Effects on Photochemical Reactions

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 44, 期 4, 页码 251-260

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar100117w

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [19049001]
  2. Hokkaido Innovation through Nanotechnology Support (HINTS)
  3. Grants-in-Aid for Scientific Research [19049005, 23225006] Funding Source: KAKEN

向作者/读者索取更多资源

Efficient solar energy conversion has been vigorously pursued since the 1970s, but its large-scale implementation hinges on the availability of high-efficiency modules. For maximum efficiency, it is important to absorb most of the incoming radiation, which necessitates both efficient photoexcitation and minimal electron hole recombination. To date, researchers have primarily focused on the latter difficulty: finding a strategy to effectively separate photoinduced electrons and holes. Very few reports have been devoted to broadband sunlight absorption and photoexdtation. However, the currently available photovoltaic cells, such as amorphous silicon, and even single-crystal silicon and sensitized solar cells, cannot respond to the wide range of the solar spectrum. The photoelectric conversion characteristics of solar cells generally decrease in the infrared wavelength range. Thus, the fraction of the solar spectrum absorbed is relatively poor. In addition, the large mismatch between the diffraction limit of light and the absorption cross-section makes the probability of interactions between photons and cell materials quite low, which greatly limits photoexcitation efficiency. Therefore, there is a pressing need for research aimed at finding conditions that lead to highly efficient photoexdtation over a wide spectrum of sunlight, particularly in the visible to near-infrared wavelengths. As characterized in the emerging field of plasmonics, metallic nanostructures are endowed with optical antenna effects. These plasmonic antenna effects provide a promising platform for artificially sidestepping the diffraction limit of light and strongly enhancing absorption cross-sections. Moreover, they can efficiently excite photochemical reactions between photons and molecules dose to an optical antenna through the local field enhancement. This technology has the potential to induce highly efficient photoexcitation between photons and molecules over a wide spectrum of sunlight, from visible to near-infrared wavelengths. In this Account, we describe our recent work in using metallic nanostructures to assist photochemical reactions for augmenting photoexcitation efficiency. These studies investigate the optical antenna effects of coupled plasmonic gold nanoblocks, which were fabricated with electron-beam lithography and a lift-off technique to afford high resolution and nanometric accuracy. The two-photon photoluminescence of gold and the resulting nonlinear photopolymerization on gold nanoblocks substantiate the existence of enhanced optical field domains. Local two-photon photochemical reactions due to weak incoherent light sources were identified. The optical antenna effects support the unprecedented realization of (i) direct photocarrier injection from the gold nanorods into TiO2 and ID) efficient and stable photocurrent generation in the absence of electron donors from visible (450 nm) to near-infrared (1300 nm) wavelengths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据