4.8 Review

Nanoparticle ζ-Potentials

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 45, 期 3, 页码 317-326

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar200113c

关键词

-

资金

  1. NSERC
  2. Canada Research Chairs program

向作者/读者索取更多资源

For over half a century, alternating electric fields have been used to induce particle transport, furnishing the zeta-potential of analytes with sizes ranging from a few nanometers to several micrometers. Concurrent advances in nanotechnology have provided new materials for catalysis, self-assembly, and biomedical applications, all of which benefit from a thorough understanding of particle surface charge. Therefore, the measurement of the zeta-potential via electrophoretic light scattering (ELS) has become essential for nanoparticle (NP) research. However, the interpretation of NP electrophoretic mobility, especially that of ligand-coated NPs, can be a complex undertaking. Despite the inherent intricacy of these data, key concepts from colloidal science can help to distill valuable information from ELS. In this Account, we adopt PEGylated Au NPs as an illustrative example to explore extensions of the classical theories of Smoluchowski, Huckel, and Henry to more contemporary theories for ligand-coated NP systems such as those from Ohshima, and Hill, Saville, and Russel. First, we review the basic experimental considerations necessary to understand NP electrophoretic mobility, identifying when O'Brien and White's numerical solution of the standard electrokinetic model should be adopted over Henry's closed-form analytical approximation. Next, we explore recent developments in the theory of ligand-coated particle electrophoresis, and how one can furnish accurate and meaningful relationships between measured NP mobility, zeta-potential, and surface charge. By identifying key ligand-coated NP parameters (e.g., coating thickness, permeability, molecular mass, and hydrodynamic segment size), we present a systematic method for quantitatively interpreting NP electrophoretic mobility. In addition to reviewing theoretical foundations, we describe our recent results that examine how the unique surface curvature of NPs alters and controls their properties. These data provide guidelines that can expedite the rational design of NPs for advanced uses, such as heterogeneous catalysis and in vivo drug delivery. As a practical demonstration of these concepts, we apply the ligand-coated theory to a recently developed noncovalent PEGylated Au NP drug-delivery system. Our analysis suggests that anion adsorption on the Au NP core may enhance the stability of these NP-drug conjugates in solution. In addition to providing useful nanochemistry insights, the information in this Account will be useful to biomedical and materials engineers, who use ELS and zeta-potentials for understanding NP dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据