4.8 Review

Liposomes: From a Clinically Established Drug Delivery System to a Nanoparticle Platform for Theranostic Nanomedicine

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 44, 期 10, 页码 1094-1104

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar200105p

关键词

-

资金

  1. University of London
  2. European Commission
  3. Japanese Society for the Promotion of Science (JSPS)

向作者/读者索取更多资源

For decades, cliniclans have used liposomes, self-assembled lipid vesicles, as nanoscale systems to deliver encapsulated anthracycline molecules for cancer treatment. The more recent proposition to combine liposomes with nanoparticles remains at the preclinical development stages; however, such hybrid constructs present great opportunities to engineer theranostic nanoscale delivery systems, which can combine simultaneous therapeutic and imaging functions. Many novel nanoparticles of varying chemical compositions are being developed in nanotechnology laboratories, but further chemical modification is often required to make these structures compatible with the biological milieu in vitro and in vivo. Such nanoparticles have shown promise as diagnostic and therapeutic tools and generally offer a large surface area that allows covalent and non-covalent surface functionalization with hydrophilic polymers, therapeutic moieties, and targeting ligands. In most cases, such surface manipulation diminishes the theranostic properties of nanoparticles and makes them less stable. From our perspective, liposomes offer structural features that can make nanoparticles biocompatible and present a clinically proven, versatile platform for further enhancement of the pharmacological and diagnostic efficacy of nanoparticles. In this Account, we describe two examples of liposome-nanoparticle hybrids developed as theranostics: liposome quantum dot hybrids loaded with a cytotoxic drug (doxorubicin) and artificially enveloped adenoviruses. We incorporated quantum dots into lipid bilayers, which rendered them dispersible in physiological conditions. This overall vesicular structure allowed them to be loaded with doxorubicin molecules. These structures exhibited cytotoxic activity and labeled cells both in vitro and in vivo. In an alternative design, lipid bilayers assembled around non-enveloped viral nanoparticles and altered their infection tropism In vitro and in vivo with no chemical or genetic capsid modifications. Overall, we have attempted to illustrate how alternative strategies to incorporate nanoparticles into liposomal nanostructures can overcome some of the shortcomings of nanoparticles. Such hybrid structures could offer diagnostic and therapeutic combinations suitable for biomedical and even clinical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据