4.8 Review

Endohedral Metal Atoms in Pristine and Functionalized Fullerene Cages

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 43, 期 1, 页码 92-102

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar900140n

关键词

-

资金

  1. Ministry of Education, Culture, Sports Science, and Technology of Japan [20108001, 20245006, 20036008, 20038007]
  2. Japan Society for the Promotion of Science (JSPS)

向作者/读者索取更多资源

Fullerene, an allotropic form of carbon made up of spherical molecules formed from pentagonal and hexagonal rings, was first discovered in 1985. Because fullerenes have spacious inner cavities, atoms and clusters can be encapsulated inside the fullerene cages to form endohedral fullerenes. In particular, the unique structural and electronic properties of endohedral metallofullerenes (EMFs), where metal atoms are encapsulated within the fullerene, have attracted wide interest from physicists and chemists as well as materials scientists and biologists. The remarkable characteristics of these molecules originate in the electron transfer from the encapsulated metal atoms to the carbon cage. The positions and movements of the encapsulated metal atoms are important determinants of the chemical and physical properties of EMFs. In this Account, we specifically describe the positions and dynamic behavior of the metal atoms encapsulated in pristine and functionalized fullerene cages. First, we examined whether the metal atoms are attached rigidly to cage carbons or move around. Our systematic investigations of EMFs, including M@C-2v-C-82, M-2@D-2(10611)-C-72, M-2@D-3h(5)-C-78, M-2@I-h-C-80, and M-2@D-5h-C-80, revealed that the metal positions and movements vary widely with different cage structures and numbers of metal atoms. Second, we wanted to understand whether we could control the positions and movements of the untouchable metal atoms in EMFs. One possible way to modulate this behavior was through attachment of a molecule to the outer surface of the cage. We developed synthetic methods to modify EMFs and have examined the metal positions and movements in the functionalized carbon cages. Remarkably, we could alter the dynamic behavior of the encaged metal atoms in M-2@I-h-C-80 drastically through chemical modification of the outer cage. We anticipate that the control of metal atom structures and dynamics within a cage could be valuable for designing functional molecular devices with new electronic or magnetic properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据