4.8 Review

Hydrogen Evolution Catalyzed by Cobaloximes

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 42, 期 12, 页码 1995-2004

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar900253e

关键词

-

资金

  1. NSF Center for Chemical Innovation [CHE-0802907, CHE-0947829]
  2. Arnold and Mabel Beckman Foundation
  3. CCSER (Gordon and Betty Moore Foundation)
  4. BP MC2 program
  5. Division Of Chemistry
  6. Direct For Mathematical & Physical Scien [0802907] Funding Source: National Science Foundation

向作者/读者索取更多资源

Natural photosynthesis uses sunlight to drive the conversion of energy-poor molecules (H2O, CO2) to energy-rich ones (O-2, (CH2O)(n)). Scientists are working hard to develop efficient artificial photosynthetic systems toward the Holy Grail of solar-driven water splitting. High on the list of challenges is the discovery of molecules that efficiently catalyze the reduction of protons to H-2. In this Account, vie report on one promising class of molecules: cobalt complexes with diglyoxime ligands (cobaloximes). Chemical, electrochemical, and photochemical methods all have been utilized to explore proton reduction catalysis by cobaloxime complexes. Reduction of a Co-II-diglyoxime generates a Col species that reacts with a proton source to produce a Co-III-hydride. Then, in a homolytic pathway, two Co-III-hydricles react in a bimolecular step to eliminate H-2. Alternatively, in a heterolytic pathway, protonation of the Co-III-hydricle produces H-2 and Co-III. A thermodynamic analysis of H-2 evolution pathways sheds new light on the barriers and driving forces of the elementary reaction steps involved in proton reduction by Co-I-diglyoximes. In combination with experimental results, this analysis shows that the barriers to H-2 evolution along the heterolytic pathway are, in most cases, substantially greater than those of the homolytic route. In particular, a formidable barrier is associated with Co-III-diglyoxime formation along the heterolytic pathway. Our investigations of cobaloxime-catalyzed H-2 evolution, coupled with the thermodynamic preference for a homolytic route, suggest that the rate-limiting step is associated with formation of the hydride. An efficient water splitting device may require the tethering of catalysts to an electrode surface in a fashion that does not inhibit association of Co-III-hydricles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据