4.8 Review

Discrete Cyclic Porphyrin Arrays as Artificial Light-Harvesting Antenna

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 42, 期 12, 页码 1922-1934

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar9001697

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan [19205006, 20108007]
  2. GCOE program Integrated Materials Science
  3. Ministry of Education, Science and Technology of Korea [2008-8-1955]
  4. Ministry of Education, Science & Technology (MoST), Republic of Korea [R32-2008-000-10217-0] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  5. National Research Foundation of Korea [2009-0093839] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

[GRAPHICS] T he importance of photosynthesis has driven researchers to seek ways to mimic its fundamental features in simplified systems. The absorption of a photon by light-harvesting (antenna) complexes made up of a large number of protein-embedded pigments initiates photosynthesis, Subsequently the many pigments within the antenna system shuttle that photon via an efficient excitation energy transfer (EET) until,it encounters a reaction center. Since the 1995 discovery of the circularly arranged chromophoric assemblies in the crystal structure of light-harvesting antenna complex LH2 of purple bacteria Rps. Acidophila, many designs of light-harvesting antenna systems have focused on cyclic porphyrin wheels that allow for efficient EET. In this Account, we review recent research in our laboratories in the synthesis of covalently and noncovalently linked discrete cyclic porphyrin arrays as models of the photosynthetic light-harvesting antenna complexes. On the basis of the silver(I)-promoted oxidative coupling strategy, we have prepared a series of extremely long yet discrete meso-meso-linked porphyrin arrays and covalently linked large porphyrin rings. We examined the photophysical properties of these molecules using steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related to the EET processes within the porphyrin rings. Within these structures, the exciton-exciton annihilation time and the polarization anisotropy rise time are well-described in terms of the Forster-type incoherent energy hopping model. In noncoordinating solvents such as CHCl3, meso-pyridine-appended zinc(II) porphyrins and their meso-meso-linked dimers spontaneously assemble to form tetrameric porphyrin squares and porphyrin boxes, respectively. In the latter case, we have demonstrated the rigorous homochiral self-sorting process and efficient EET along these cyclic porphyrin arrays. The meso-cinchomeronimide appended zinc(H) porphyrin forms a cyclic trimer. We have also shown that the corresponding meso-meso-linked diporphyrins undergo high-fidelity self-sorting assembling to form discrete cyclic trimer, tetramer, and pentamer with large association constants through perfect discrimination of enantiomeric and conformational differences of the meso-cinchomeronimide substituents. Collectively, these studies of covalently and noncovalently linked discrete cyclic porphyrin arrays aid in the understanding of the structural requirements for such very fast EET in natural light-harvesting complexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据