4.8 Review

Dynamic Thermodynamic Resolution: Advantage by Separation of Equilibration and Resolution

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 42, 期 2, 页码 224-234

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar8000662

关键词

-

资金

  1. National Institutes of Health
  2. James R. Eiszner Fund
  3. National Research Foundation of Korea [핵06A3005] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

[GRAPHICS] In the investigation of a chemical reaction, researchers typically survey variables such as time, temperature, and stoichiometry to optimize yields. This Account demonstrates how control of these variables, often in nontraditional ways, can provide significant improvements in enantiomeric ratios for asymmetric reactions. Dynamic thermodynamic resolution (DTR) offers a convenient method for the resolution of enantiomeric products in the course of a reaction. This process depends on an essential requirement: the equilibration of the penultimate diastereomers must be subject to external control. As a general case, the reaction of A(R), A(S) with B under the influence of the chiral species, L*, gives resolved products C-R and C-S. In the first step of dynamic resolution under thermodynamic control, the enantiomeric reactants A(R) and A(S) and L* form the diastereomers A(R)/L* and A(S)/L*. The equilibrium between A, and A, can be rapid, slow, or not operative, and L* can represent a ligand, an auxiliary, or a crystallization process that provides a chiral environment. Second, the populations of the diastereomers are controlled, usually by thermal equilibration. Finally, the reaction of the diastereomers with a reagent B provides the enantiomeric products C-R and C-S. The control of the diastereomeric equilibrium distinguishes DTR from other resolution techniques. By contrast, physical resolutions separate thermodynamically stable, nonequilibrating diastereomers, and dynamic kinetic resolutions utilize kinetic control for reactions of rapidly equilibrating diastereomers. The dynamic thermodynamic resolutions discussed in this Account illustrate cases of significantly improved enantioselectivities using this technique. Although many of the well-recognized cases come from organolithium chemistry, the principles are general, and we also present cases facilitated by other chemistries. This approach has been used to control enantioselectivities in a number of different reactions, with improvements in enantiomeric ratios up to 99% from essentially racemic reactants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据