4.8 Review

Ab initio determination of dark structures in radiationless transitions for aromatic carbonyl compounds

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 41, 期 3, 页码 452-457

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar700205f

关键词

-

向作者/读者索取更多资源

Mechanistic photodissociation of a polyatomic molecule has long been regarded as an intellectually challenging area of chemical physics, the results of which are relevant to atmospheric chemistry, biological systems, and many application fields. Carbonyl compounds play a unique role in the development of our understanding of the spectroscopy, photochemistry, and photophysics of polyatomic molecules and their photodissociation has been the subject of numerous studies over many decades. Upon irradiation, a molecule can undergo internal conversion (IC) and intersystem crossing (ISC) processes, besides photochemical and other photophysical processes. Transient intermediates formed in the IC and ISC radiationless processes, which are termed dark, are not amenable to detection by conventional light absorption or emission. However, these dark intermediates play critical roles in IC and ISC processes and thus are essential to understanding mechanistic photochemistry of a polyatomic molecule. We have applied the multiconfiguration complete active space self-consistent field (CASSCF) method to determine the dark transient structures involved in radiationless processes for acetophenone and the related aromatic carbonyl compounds. The electronic and geometric structures predicted for the dark states are in a good agreement with those determined by ultrafast electron diffraction experiments. Intersection structure of different electronic states provides a very efficient funnel for the IC or ISC process. However, experimental determination of the intersection structure involved in radiationless transitions of a polyatomic. molecule is impossible at present We have discovered a minimum energy crossing point among the three potential energy surfaces (S, T, and T,) that appears to be common to a wide variety of aromatic carbonyl compounds with a constant structure. This new type of crossing point holds the key to understanding much about radiationless processes after photoexcitation of aromatic carbonyl compounds. The importance of ab initio determination of transient structures in the photodissociation dynamics has been demonstrated for the case of the aromatic carbonyl compounds. In addition, the detailed knowledge of mechanistic photochemistry for aromatic carbonyl compounds forms the basis for further investigating photodissociation dynamics of a polyatomic molecule.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据