4.8 Review

Supracrystals of Inorganic Nanocrystals: An Open Challenge for New Physical Properties

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 41, 期 12, 页码 1799-1809

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar800082q

关键词

-

向作者/读者索取更多资源

When naturally occurring spherical objects self-organize, the physical properties of the material change. For example, a colorless opal is the result of a disordered aggregate of silica particles. When the silica particles are ordered, however, the opal takes on color, which is determined by the size of the self-assembled particles. In this Account, we describe how these 3D arrangements of nanomaterials can self-organize in 3D arrays called supracrystals; the 3D arrays can fall into the familiar categories of face-centered cubic (fcc), hexagonal compact packing (hcp) crystals, and body-centered (bcc) crystals. The collective properties of these 2D and 3D arrangements are different from the properties of individual nanoparticles and from particles in bulk. Comparison between the approach to saturation of the magnetic curve for supracrystals and disordered aggregates produced from the same batch of nanocrystals is similar to that observed with films or nanoparticles, either highly crystallized or amorphous. We also demonstrate by two various processes and with two types of nanocrystals (silver and cobalt) that when nanocrystals are self-ordered in 3D superlattices, they exhibit a coherent breathing mode vibration of the supracrystal, analogous to a breathing mode vibration of atoms in a nanocrystal. Furthermore, we used 10 nm gamma-Fe2O3 nanocrystals to gain new insight into the scaling law of crack patterns. We found that isotropic and directional crack patterns follow the same universal scaling law over a film height varying by 3 orders of magnitude. These data have led us to propose general analogies between supracrystals of nanocrystals, individual nanocrystals, and the molecules in the bulk phase for certain physical properties based on the ordering of the material. As we continue to study the physical properties of the ordered and disordered arrangements of nanomaterials, we will be able to go further in these analogies. And this exploration leads to new questions: first and foremost, is this behavior general?

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据